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Abstract

The reproductive system of a tree species has substantial impact on genetic diversity and structure 
within and among natural populations. Such information, should be considered when planning 
tree planting for forest restoration. Here, we describe the mating system and genetic diversity of 
an overexploited Neotropical tree, Myroxylon peruiferum L.f. (Fabaceae) sampled from a forest 
remnant (10 seed trees and 200 seeds) and assess whether the effective population size of nursery-
grown seedlings (148 seedlings) is sufficient to prevent inbreeding depression in reintroduced 
populations. Genetic analyses were performed based on 8 microsatellite loci. M.  peruiferum 
presented a mixed mating system with evidence of biparental inbreeding ( ˆ ˆt tm s−  = 0.118). We found 
low levels of genetic diversity for M. peruiferum species (allelic richness: 1.40 to 4.82; expected 
heterozygosity: 0.29 to 0.52). Based on Ne v( )  within progeny, we suggest a sample size of 47 seed trees 
to achieve an effective population size of 100. The effective population sizes for the nursery-grown 
seedlings were much smaller (Ne  = 27.54–34.86) than that recommended for short term (Ne  ≥ 100)  
population conservation. Therefore, to obtain a reasonable genetic representation of native tree 
species and prevent problems associated with inbreeding depression, seedling production for 
restoration purposes may require a much larger sampling effort than is currently used, a problem 
that is further complicated by species with a mixed mating system. This study emphasizes the 
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need to integrate species reproductive biology into seedling production programs and connect 
conservation genetics with ecological restoration.

Subject area: Conservation genetics and biodiversity
Keywords:  conservation genetics, forest nurseries, forest restoration, microsatellite, outcrossing rate, restoration plantations

Tropical forests host the majority of the world’s terrestrial biodi-
versity and supply ecosystem goods and services to a large share 
of humanity, especially poor communities relying on natural 
resources to survive (Ghazoul 2015). However, tropical forests 
have been substantially affected by high levels of deforestation and 
chronic human-mediated disturbances, especially in developing 
countries (Sloan and Sayer 2015). In particular, large tree species 
have been one of the biological groups most affected by fragmenta-
tion (Haddad et al. 2015) and overexploitation (Asner et al. 2005; 
Oliveira et  al. 2008), which have driven their decline worldwide 
(Lindenmayer and Laurance 2016).

Ecological restoration has recently emerged as a central strategy 
to mitigate the aforementioned environmental problems and sup-
port the expansion of tree species populations in human-modified 
tropical landscapes (Alexander et al. 2011; Melo et al. 2013a). Since 
many native trees with high conservation value may not spontane-
ously recolonize degraded sites (Reid et al. 2015; Shoo et al. 2016), 
active restoration and enrichment planting with seeds and nursery-
grown seedlings have become common strategies to reintroduce a 
myriad of large tree species that are typical of old-growth tropi-
cal forests (Cole et al. 2011; Rodrigues et al. 2011; Bertacchi et al. 
2016). In this context, the conservation value of tropical restored 
forests may heavily rely on the seedling stocks supplied by forest 
nurseries (Brancalion et al. 2012). However, to succeed in this task, 
forest nurseries must supply seedlings with a reasonable level of 
genetic diversity to support a long-term persistence of reintroduced 
populations in restored forests (Williams 2001). Despite the grow-
ing recognition of the importance of genetics in guiding restoration 
efforts (Mijangos et al. 2015) little is known about the capacity of 
forest nurseries to produce seedlings with adequate genetic diversity.

In addition to the negative consequences for population struc-
ture, overexploitation of tree species may also result in detrimen-
tal impacts on mating, gene flow, and genetic diversity (Aguilar 
et  al. 2006, 2008; Arruda et  al. 2015). The preservation of large 
trees populations depends mainly on conserving genetic variabil-
ity, which in turn enhances trees’ adaptive potential and the prob-
ability of long-term survival and reproductive success in a changing 
biosphere (Namkoong et al. 2002; Barrett and Schluter 2008; Wan 
et  al. 2014). A  species’ reproductive system is one of the key fac-
tors influencing overall genetic diversity (Charlesworth and Wright 
2001). Understanding the mating system of a species may also offer 
insights into population dynamics (Sebbenn 2006; Barrett 2010) and 
inform seedling production strategies to achieve the best outcomes 
for genetic conservation. The effective population size also has an 
important influence on the capacity of a population to maintain its 
genetic characteristics across generations, and it is essential in the 
analysis of a population’s viability in the mid- and long-term (Palstra 
and Ruzzante 2008; Espeland and Rice 2010).

The goal of this study was to describe the mating system and 
effective population size in a conserved population of the overex-
ploited Neotropical tree, Myroxylon peruiferum L.f (Fabaceae), and 
determine if the genetic diversity of nursery-grown seedlings is suf-
ficient to prevent inbreeding in populations reintroduced in forest 

restoration sites. We address the following specific questions: (a) 
What is the mating system of the species? (b) How many seed trees 
are required for seed collection to achieve an effective population 
size that would potentially prevent inbreeding depression? (c) What 
is the level of genetic diversity and effective population size of nurs-
ery-grown seedlings produced for restoration projects?

Materials and Methods

Study Site and Species
The study area is located in the Atlantic Forest biome of Brazil, 
a global biodiversity hotspot that includes 20 000 plant species, 
of which 8000 are endemic (Myers et  al. 2000; Laurance 2009). 
Originally covering more than 130 million ha, the Atlantic Forest 
biome currently covers 19 676 120 ha or 15% of its original area 
(SOS Mata Atlântica/INPE 2015). The remaining forest cover is 
mainly found as small, isolated fragments embedded in human-mod-
ified landscapes (Ribeiro et al. 2009). Within the Atlantic Forest, we 
focused our study on the “Interior” biogeographical zone, the second 
most threatened of this biome, of which only 7% of the original for-
est cover remains (Ribeiro et al. 2009).

The study species is M. peruiferum L.f. (Fabaceae), commonly 
known as cabreúva or balsam, a late-successional tree widely distrib-
uted throughout the Atlantic Forest, which is pollinated by bees and 
birds, and has wind-dispersed seeds (Yamamoto 2001; Yamamoto 
et al. 2007). The wood is very dense (0.85–0.90 g/cm3) and resistant, 
making it suitable for construction and furniture manufacturing, and 
its aromatic compounds have also led to its use in cosmetics and bar-
rels for beverage ageing (Lorenzi 1992; Figliolia et al. 2006; Catão 
et al. 2011). Furthermore, the species has phytotherapeutic potential 
as an antibacterial agent (Ohsaki et al. 1999; Gonçalves et al. 2005; 
Carvalho et al. 2008). Myroxylon peruiferum has experienced a sig-
nificant reduction in population size caused largely by timber exploi-
tation, which has compromised the genetic diversity of the species 
and increased its vulnerability to extinction (Mamede et al. 2007). 
This species is widely used in restoration programs throughout the 
Atlantic Forest that aim to recover high levels of plant taxonomic 
diversity in degraded areas, with a particular focus on threatened 
species (Brancalion et al. 2012). However, little is known about the 
genetic diversity of the species that are included in these programs.

Initially, we assessed the mating system, genetic diversity, fixation 
index, and effective population size of M. peruiferum in a natural 
forest remnant population found in the Caetetus Ecological Station 
(2170 ha), São Paulo State, southeastern Brazil. This protected area 
is one of the best-preserved remnants within the “Interior” biogeo-
graphical region of the Atlantic Forest (Figure 1).

We further selected 4 forest nurseries that supply seedlings to 
restoration projects to assess the genetic diversity, fixation index, 
and effective population size of nursery-grown seedlings: 1) Flora 
Tiête (N1)—a private nursery located in the municipality of 
Penápolis, SP, that collects M. peruiferum seeds from approximately 
30 seed trees in the region; 2) Refloresta (N2)—a private nursery 
located in Capão Bonito, SP that uses M. peruiferum seeds bought 
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from a cooperative of seed collectors in the region; 3)  Copaíba 
(N3)—a NGO forest nursery located in Socorro, SP, which collects 
M. peruiferum seeds from 3 seed trees; and 4) Camará (N4)—a pri-
vate forest nursery in Ibaté, SP, that usually collects M. peruiferum 
seeds from 2 seed trees (Figure 1).

Sampling
To estimate the outcrossing rate of M. peruiferum we used 200 open 
pollinated progenies obtained from 10 seed trees in the aforemen-
tioned forest remnant. We collected seeds from all trees bearing seeds 
at the time of collection in November, 2012 (Figure 2). We also esti-
mated genetic diversity, fixation index, and effective size for the fol-
lowing groups from the forest remnant: all 10 maternal genotypes, 
plus 2 groups of 5 and 2 randomly sampled seed trees; all 200 prog-
enies arrays, plus samples of 100 and 40 progenies arrays; and 4 set 
of 37 randomly sampled seeds (hereafter pool1, pool2, pool3, and 
pool4). To estimate the genetic diversity, fixation index, and effective 
size of nursery-grown seedlings, we collected leaves from 37 ran-
domly selected seedlings in each nursery, totaling 148 seedlings for 
the 4 nurseries. Samples were stored in liquid nitrogen until DNA 
extraction.

DNA Extraction and Genotyping
Genomic DNA was isolated following a protocol adapted from Doyle 
and Doyle (1990), in which we used an extraction buffer containing 
2% CTAB, 20 mM EDTA, 100 mM Tris–HCl, pH 8.0, 2% PVP-40 
(w/v), 1.42 M NaCl, and 3% betamercaptoethanol (v/v). Samples 
were amplified for 8 polymorphic microsatellite markers developed 
for M. peruiferum by Schwarcz et al. (2014): Mpe-C01, Mpe-C04, 
Mpe-C12, Mpe-E02, Mpe-E03, Mpe-F08, Mpe-G01, and Mpe-H10. 
Amplicons were separated using 5% polyacrylamide gel electropho-
resis on a LI-COR 4300 DNA Analyzer (Li-Cor Biosciences, Lincoln, 
NE). Allele size was determined using the 50–350 bp IRDye700 and 
800 ladder (Li-Cor) and SAGA v.3.3 software (Li-Cor).

Mating System Analysis
Based on the forest remnant population, we assessed the mat-
ing system using the mixed mating model (Ritland and Jain 1981) 
and the correlated mating model (Ritland 1989) implemented in 

the MLTR software (Ritland 2002). Numerical optimization using 
the population-level expectation maximization (EM) algorithm 
was used to obtain maximum likelihood estimate of parameters. 
We estimated the multilocus outcrossing rate (ˆ ),tm  single-locus 
outcrossing rate (ˆ ),ts  outcrossing rate among relatives (ˆ ˆ )t tm s−  
and multilocus paternity correlation (ˆ )rp  using 5 seed-trees with 
known genotype and 5 seed-trees without genotypes. Thus, for 
the latter, the parameters were estimated indirectly. These param-
eters were used to estimate the effective number of pollen donors 
(N rep p= 1 / ), and the average coancestry coefficient within the prog-
eny: θ = 0.125(1 )[4 (+ + +ˆ ˆ ˆ ˆ ˆ ˆ )( ˆ )],F r rp m m s ps+ t st2 1  where Fp  is the paren-
tal inbreeding coefficient (Ritland 1989), s t

m
= −1  is the natural 

selfing rate, rs  is the correlation of selfing, and rp  is the multilocus 
paternity correlation. We also estimated effective number of pol-
len donors ( / )Nep ft= 1 2φ  and the average coancestry coefficient 
within progeny ( θ φ= 0.125(1 )[4 (+ + +ˆ ˆ ˆ ˆ ˆ ˆ )( ])F rp m m s fts+ t st2 1 2  using the 
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Figure 1. Map of the 5 study areas in São Paulo State, Brazil. Forest remnant, forest fragment reference population; N1, Flora Tiête nursery; N2, Refloresta 
nursery; N3, Copaíba nursery; N4, Camará nursery.

Figure  2. Map of the seed trees of Myroxylon peruiferum in the forest 
fragment found in the Caetetus Ecological Station in São Paulo State, Brazil.
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coefficient of pollen pool structure ( )φft  in TwoGener (Smouse et al. 
2001). The frequency of pairwise self-sibs ( ),PSS  half-sibs ( ),PHS  full-
sibs ( ),PFS  and self-half-sibs ( ( )PSHS ) within progenies were estimated 
based on Sebbenn (2006).

The fixation index for the seed trees and progenies was calculated 
using the FSTAT software (Goudet 1995). The variance effective size 
( )( )Ne v  within the progeny was estimated following Cockerham 
(1969), as adapted by Tambarussi et al. (2016). The number of seed 
trees necessary for seed collection to conserve or restore an effective 
population size of 100 that is recommended for short-term conser-
vation to avoid inbreeding depression (Frankham et al. 2014), was 
estimated as ˆ / ˆ

( ) ( )m N Ne e v= reference  (Sebbenn 2006). This estimate has 
3 assumptions: 1) seed trees are not related; 2) each seed tree has a 
different set of pollen donors; and 3) selected seed trees do not mate 
with each other.

Analysis of Genetic Diversity
We assessed the genetic diversity of M. peruiferum species based on 
allelic richness ( ),AR  observed heterozygosity ( ),HO  and expected 
heterozygosity under Hardy–Weinberg equilibrium ( ).HE  To iden-
tify inbreeding, we used the fixation index ( ).FIS  These analyses 
were performed using R (R Core Team 2015) with the: diveRsity 
(Keenan et al. 2013) and PopGenKit (Paquette 2012) packages. The 
effective population size ( )Ne  was estimated following Cockerham 
(1969) with the coancestry coefficient inferred from the kinship coef-
ficient using Nasson’s formula (Loiselle et al. 1995), in the SPAGeDi 
1.3 program (Hardy and Vekemans 2002). The confidence intervals 
were obtained from 1000 bootstrap replicates, resampling over loci.

Results

Mating System
For the forest remnant, the multilocus outcrossing rate t̂m  was 
0.740, the single-locus outcrossing rate ( )t̂s  was 0.622, and 
the selfing rate was 0.260 (Table  1). The rate of mating among  

relatives ( )ˆ ˆt tm s−  was 0.118, indicating biparental inbreeding and 
probable intra-population genetic structure. The multilocus pater-
nity correlation (ˆ )rp  was 0.233. The coefficient of pollen pool struc-
ture ( )φft  was 0.155. The number of pollen donors based on r̂p  
was 4.3 and on φft  was 3.2 (Table 1). The offspring from the forest 
population was mainly composed of half-sibs (42%), followed by 
self-half-sibs (38%), full-sibs (13%), and self-sibs (7%) (Table 1).

The coancestry coefficient within progeny was 0.217 and 0.223 
and the variance effective size among offspring was 2.12 and 2.07 
using r̂p  and φft , respectively (Table 1). Based on this variance effec-
tive size, 47 seed trees are necessary for seed collection to conserve or 
restore an effective population size of 100 (Table 1).

Genetic Diversity
We found no significant differences for the estimates of genetic diver-
sity (AR  and HO)  in nursery-grown seedlings (Table 2). The HE  
estimate was significantly higher in the N4 than N3 nursery (95% 
confidence interval [CI]). Inbreeding was significantly higher in the 
N4 nursery than N2 and N3 (95% CI) and significantly different 
from zero. The Ne  for the N1 and N4 nurseries was significantly 
lower than the sample size (Table 2).

Among maternal genotypes, the estimates of genetic diversity 
( ,AR HO ,HE)  and fixation index were not significantly different 
(Table 3), and inbreeding were not significantly different from zero. 
Furthermore, the Ne  for maternal genotypes was not significantly 
different from the sample size (Table 3).

Among progeny arrays, the estimates of genetic diversity (AR  and 
HO)  and fixation index were not significantly different (Table 3). The 
HE  estimate for the progeny array of 200 was significantly higher 
than the progeny array of 40 (95% CI). The Ne  for the progeny 
arrays were significantly lower than the sample size (Table 3).

For the 4 sets of randomly chosen seeds, the estimates of genetic 
diversity ( ,AR HO, HE)  and fixation index were not significantly 
different among thm. The Ne  for each set of random seeds was 
significantly lower than the sample size (Table 3).

Discussion

Mating System
Mating system analysis showed a t̂m  of 0.740, indicating a mixed 
mating system with a predominance of outcrossing and the likely 
presence of weak or no self-incompatibility mechanisms in the forest 
remnant. Species with a mixed mating system may have high levels 
of adaptability to environmental conditions in new areas and sub-
stantial evolutionary potential due to the occurrence of both selfing 
and allele recombination (Scariot et  al. 1991). However, a mixed 
mating system can also lead to increased inbreeding depression in 
disturbed populations (Tambarussi et  al. 2017). Because outcross-
ing rates can vary among populations, individuals, and reproductive 
events for a single plant (Sebbenn 2006; Feres et al. 2012; Karron 
et  al. 2012), different populations may have different outcrossing 
rates. Therefore, the mating system of a species should be preferably 
determined based on many populations (Tambarussi et  al. 2017). 
The use of a single population to estimate the mating system of 
M. peruiferum is thus a limitation of our study, which is justified by 
the lack of preserved populations of this rare, overexploited species 
available for seed sampling in the region.

The overall biparental outcrossing rate (0.118) for the forest 
remnant suggests existence of spatial genetic structure (SGS) due to 
mating among relatives and biparental inbreeding (Gaino et al. 2010;  

Table 1. Estimates of the mating system parameters for the forest 
remnant population of Myroxylon peruiferum

Parameters Ref (95% CI)

MLTR
 Number of mother-trees/number of seeds 10/200
 Multilocus outcrossing rate (ˆ )tm 0.740 (0.646–0.807)
 Single-locus outcrossing rate t̂s 0.622 (0.549–0.678)
 Mating among relatives ˆ ˆt tm s− 0.118 (0.060–0.174)
 Multilocus paternity correlation r̂p 0.233 (0.106–0.335)
 Percent of pairwise self-sibs ( ˆ )PSS 0.07 (0.04–0.13)
 Percent of pairwise half-sibs ( ˆ )PHS 0.42 (0.32–0.53)
 Percent of pairwise full-sibs ( ˆ )PFS 0.13 (0.05–0.19)
 Percent of pairwise self-half-sibs ( ˆ )PSHS 0.38 (0.31–0.46)
 Effective number of pollen donors (Nep) 4.3
 Coancestry coefficient within progeny (θ ) 0.217
 Variance effective size (Ne v( )) 2.12
 Number of seed trees ( ˆ )m 47
TwoGener
 Coefficient of pollen pool structure ( )φft 0.155
 Effective number of pollen donors ( )Nep 3.2
 Coancestry coefficient within progeny ( )θ 0.223
 Variance effective size ( )( )Ne v 2.23
 Number of seed trees ( ˆ )m 45
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Forti et al. 2014). The dispersal mechanisms of a species can greatly 
influence SGS (Jordano et  al. 2007; Hoban et  al. 2014) and seed 
dispersal has a major impact on SGS in tropical species (Dick et al. 
2008). Myroxylon peruiferum has large samara fruits dispersed by 
wind. Large samaras are often dispersed in clusters, with a conse-
quent clustering of seedling recruitment (Greene and Johnson 1993) 
(Figure 2); this may explain the observed intrapopulation SGS found 
herein.

The effective number of pollen donors ( )Nep  per offspring using 
the different parameters (φft  = 3.2 and r̂p  = 4.3) suggests that few 
paternal parents contributed pollen to each offspring in the analyzed 
generation, indicating correlated mating. The correlated mating 
found in the M. peruiferum forest remnant population may be asso-
ciated with the low population density of the species, at 2 individuals 
per hectare (Durigan et al. 2000). Low population density is linked 
to reduced levels of pollen diversification (Murawski and Hamrick 
1991; Cascante et al. 2002), resulting in increased mating between a 
limited number of individuals.

The coancestry coefficient for each offspring using the 2 differ-
ent parameters were higher (θ  = 0.217 and 0.223) than expected 
for half-sib families (θ  = 0.125), suggesting mixed parentage, and 
is consistent with the ratio of relationship types found among off-
spring (Table 1). The variance effective size within progeny using the 
2 parameters was lower ( ( )Ne v  = 2.12 and 2.07) than expected for 
a panmictic population ( ( )Ne v ≈4), which has important implications 
for seed collection for breeding, conservation, and restoration pro-
grams (Sebbenn 2006).

The lower Ne v( )  within progeny is assumed to be related to 
inbreeding and biparental inbreeding found in this study, which is 
expected as we observed high levels of coancestry among seedlings 

of progeny (Table 1). These processes can occur because of the lim-
ited number of seed trees sampled (10 seed trees), which included 
some isolated trees and some trees that are very close to each other 
(Figure  2). The limited sample size of seed trees and their spatial 
proximity may have influenced the results showing increased cross-
ing among closely related individuals and reduced pollen diversity. 
Geographically isolated groups of trees or single isolated trees, as 
well as small or low-density populations, tend to show higher self-
ing rates (Dick et al. 2003; Lander et al. 2010; Moraes and Sebbenn 
2011; Manoel et al. 2012; Tambarussi et al. 2017). Increased levels 
of pollen diversity can increase the genetic diversity and variance 
effective size within progeny (Picanço-Rodrigues et al. 2015), thus 
helping to maintain evolutionary potential (Sgrò et al. 2011).

Based on Ne v( )  within progeny from the forest remnant, for con-
servation and seed collection for restoration strategies, seeds from a 
large number of seed trees (m̂  = 47) should be collected to ensure a 
reliable effective population size for genetic conservation. Herein, we 
collected seeds from 10 seed trees, thus an additional 37 seed trees 
would need to be included in the sampling strategy of the present 
study. However, it is quite difficult to access M. peruiferum seed trees 
due to a combined consequence of its naturally low abundance in 
remnants, historical overlogging, and reduced cover of old-growth 
forests in the Atlantic Forest region. Macedo (1993) has noted the 
difficulty in collecting seeds from native species, which are commonly 
obtained from a few trees and in urban areas, leading to genetic 
problems that may affect the success of future planting efforts.

Other studies have also recommended seed collection from many 
seed trees to achieve the desired effective population sizes for genetic 
conservation. The BLM Seeds of Success program (USDI Bureau of 
Land Management 2012), for instance, suggests sampling seeds from 

Table 2. Genetic diversity estimates for Myroxylon peruiferum in 4 commercial nurseries in São Paulo state

Nurseries n AR  (95% CI) HO  (95% CI) HE
 (95% CI) FIS

 (95% CI) Ne
 (95% CI)

N1 37 2.73 (2.12 to 3.00) 0.40 (0.33 to 0.47) 0.47 (0.43 to 0.49) 0.15 (−0.01 to 0.29) 31.54 (28.43 to 34.40)
N2 37 2.91 (2.25 to 3.25) 0.44 (0.39 to 0.50) 0.43 (0.38 to 0.47) −0.03 (−0.15 to 0.09) 34.34 (31.39 to 37.83)
N3 37 3.01 (2.62 to 3.25) 0.42 (0.37 to 0.47) 0.43 (0.39 to 0.46) 0.04 (−0.08 to 0.16) 34.86 (32.39 to 39.29)
N4 37 2.92 (2.62 to 3.00) 0.35 (0.29 to 0.40) 0.51 (0.47 to 0.53) 0.34 (0.24 to 0.44) 27.54 (24.27 to 31.24)

n,  number of sampled individuals; AR ,  allelic richness; HO,  observed heterozygosity; HE ,  expected heterozygosity under Hardy–Weinberg equilibrium; FIS ,  
fixation index; Ne ,  effective population size.

Table 3. Genetic diversity estimates for Myroxylon peruiferum seeds trees and progeny arrays from a forest remnant in São Paulo state

Groups n AR  (95% CI) HO
 (95% CI) HE  (95% CI) FIS  (95% CI) Ne  (95% CI)

10 seed trees 10 1.50 (0.30 to 2.25) 0.63 (0.45 to 0.81) 0.46 (0.40 to 0.56) −0.33 (−0.66 to −0.17) 8.98 (7.80 to 10.06)
200 seeds 200 4.82 (4.13 to 5.38) 0.38 (0.36 to 0.40) 0.52 (0.50 to 0.55) 0.28 (0.22 to 0.32) 158.13 (149.62 to 165.46)
5 seed trees 5 1.53 (0.38 to 2.00) 0.60 (0.45 to 0.75) 0.43 (0.37 to 0.49) −0.39 (−0.77 to −0.15 ) 5.24 (4.74 to 5.69)
100 seeds 100 4.52 (3.63 to 5.13) 0.35 (0.32 to 0.38) 0.50 (0.46 to 0.53) 0.30 (0.24 to 0.37) 76.95 (72.40 to 82.01)
2 seed trees 2 1.40 (0.50 to 1.75) 0.50 (0.14 to 0.86) 0.29 (0.11 to 0.46) −0.80 (−1.31 to 0.41) 2.25 (1.88 to 2.50)
40 seeds 40 3.71 (2.88 to 4.25) 0.35 (0.30 to 0.40) 0.44 (0.39 to 0.49) 0.22 (0.11 to 0.31) 31.93 (29.85 to 33.81)
Simulations
 Pool1 37 3.18 (2.88 to 3.38) 0.37 (0.31 to 0.44) 0.43 (0.39 to 0.46) 0.15 (0.04 to 0.26) 32.88 (30.44 to 35.10)
 Pool2 37 3.17 (2.88 to 3.38) 0.35 (0.30 to 0.41) 0.43 (0.39 to 0.46) 0.18 (0.07 to 0.30) 32.91 (30.23 to 36.01)
 Pool3 37 3.21 (3.00 to 3.25) 0.39 (0.33 to 0.45) 0.47 (0.43 to 0.49) 0.17 (0.06 to 0.28) 31.75 (28.34 to 35.10)
 Pool4 37 3.46 (3.13 to 3.75) 0.37 (0.32 to 0.43) 0.45 (0.41 to 0.48) 0.17 (0.07 to 0.27) 32.02 (29.88 to 34.14)

AR,  allelic richness; HO,  observed heterozygosity; HE ,  expected heterozygosity under Hardy–Weinberg equilibrium; FIS ,  fixation index; Ne ,  effective 
population size.
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50 individuals if the mating system of the species or rates of self-
ing are unknown. Sebbenn (2002) also recommends collecting seeds 
from a larger number of seed trees for species that have some level 
of inbreeding.

Genetic Diversity
The values for genetic diversity parameters presented in our study 
are lower than those commonly observed in tropical tree species. 
This low genetic diversity can be attributed to low population 
density in association with the mating system of M.  peruiferum. 
A reduction in the density of adult trees due to logging can lead to 
changes in genetic diversity patterns and the loss of alleles (André 
et al. 2008; Lacerda et al. 2008), further affecting seed harvesting for 
restoration purposes.

The excess of homozygosity found in progeny arrays (Table 3) 
compared to seed trees can be attributed to selfing, mating among 
relatives, and correlated mating. These forms of reproduction 
increase levels of inbreeding and relatedness found within offspring 
and decrease the heterozygosity within progeny (Tarazi et al. 2013). 
The inbreeding levels found herein are likely the result of individual 
isolation due to fragmentation. Population isolation can influence 
plant–pollinator interactions (e.g., reduce the number of pollina-
tors) resulting in a negative impact on the reproductive system and 
gene flow, and increasing the levels of inbreeding (Lowe et al. 2005; 
Aguilar et  al. 2006; Girão et  al. 2007; Kettle et  al. 2007; Aguilar 
et al. 2008; Lobo et al. 2013; Tambarussi et al. 2015).

The Ne  in seed trees and nurseries (N2 and N3) were similar 
to the sample size, indicating that there is no inbreeding in these 
groups, as seen in Table 3. As the fixation indices for these samples 
were not different from zero, we expect no negative impacts on the 
genetic diversity in these groups. For the other groups, the Ne  was 
lower than the sample size. This low Ne  is potentially related to 
inbreeding, mating among relatives, and correlated mating, probably 
due to the mixed mating system of the species and fragmentation at 
the seed collection sites. A mixed mating system strongly affects the 
estimates of Ne  (Alves et  al. 2003). Recent human-mediated dis-
turbances that reduce the number of reproductive individuals, such 
as harvesting and fragmentation, may have resulted in restricted 
gene flow and, consequently, contributed to reduced genetic diver-
sity over generations (Johansson et al. 2007; De-Lucas et al. 2009; 
Shivaprakash et al. 2014).

Comparing the effective population size between nurseries and 
the groups of seeds with known mothers (pool1, pool2, pool3, 
and pool4), we observed that the Ne  were similar among them 
and lower than that recommended for short-term Ne  ≥ 100) and 
long-term (Ne  ≥ 1000)  conservation of populations (Frankham 
et al. 2014). To reestablish a population with high levels of genetic 
diversity, thus enabling mid to long-term ecological viability, the 
reintroduced population must have an effective population size large 
enough to prevent inbreeding depression over time. One strategy to 
increase the Ne  of M. peruiferum in nursery-grown populations is 
to collect seeds from a large number of seed trees; this could provide 
greater genetic diversity, which in turn enhances the viability of new 
populations. The contrasting numbers of seed trees that nursery N1 
(30) and N4 (2) use for collecting M. peruiferum seeds highlight the 
challenges to obtaining an appropriate Ne  in practice.

An alternative strategy to increase genetic diversity in seedling 
stocks in nurseries is the exchange of seeds and seedlings among 
nurseries (Brancalion et al. 2012). If we consider an initial popula-
tion with seedlings from all 4 nurseries or all sets of random seeds, 

we would have a sample with an effective population size of 129 
and 125, respectively, thus falling within the recommended levels for 
short-term population viability (Frankham et  al. 2014). However, 
the strategy of mixing genetic materials from distant forest nurseries 
or collection areas can increase the risk of outbreeding depression in 
new populations, which may result in a loss of fitness due to genetic 
dissimilarity (Edmands 2007). Although care should be taken with 
the origins of the seeds to be exchanged among nurseries, mixing 
seed lots across nurseries or collection areas within the same bio-
geographical region is a promising strategy to increase the genetic 
diversity of nursery-grown seedlings at reduced costs. In fact, the 
risks for inbreeding depression is expected to be much higher for this 
species than that of outbreeding depression.

Specific recommendations related to seed collection of 
Atlantic Forest endangered trees species are needed to support 
ongoing large-scale restoration programs like the Atlantic Forest 
Restoration Pact, a coalition of more than 270 organizations work-
ing to restore 15 million hectares of the biome by 2050 (Melo et al. 
2013b). This study highlights the need for better integration of 
conservation genetics with restoration programs to take advantage 
of the growing global investment in ecosystem restoration (Menz 
et al. 2013). Integrating conservation genetics into restoration pro-
grams is paramount for the reestablishment of populations with 
the genetic potential to self-perpetuate in the context of global 
environmental change.
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